Abstract

In this study, we use the addition theorem and superposition technique to solve the scattering problem with multiple circular cylinders arising from point sound sources. Using the superposition technique, the problem can be decomposed into two individual parts. One is the free-space fundamental solution. The other is a typical boundary value problem (BVP) with specified boundary conditions derived from the addition theorem by translating the fundamental solution. Following the success of null-field boundary integral formulation to solve the typical BVP of the Helmholtz equation with Fourier densities, the second-part solution is easily obtained after collocating the observation point exactly on the real boundary and matching the boundary condition. The total solution is obtained by superimposing the two parts which are the fundamental solution and the semianalytical solution of the Helmholtz problem. An example was demonstrated to validate the present approach. The parameter study of size and spacing between cylinders are addressed. The results are well compared with the available theoretical solutions and experimental data. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.