Abstract

Scattering of waves obliquely incident on small cylindrical undulations at the bottom of a two-layer fluid wherein the upper layer has a free surface and the lower layer has an undulating bottom, is investigated here assuming linear theory. There exists two modes of time-harmonic waves propagating at each of the free surface and the interface. Due to an obliquely incident wave of a particular mode, reflected and transmitted waves of both the modes are created in general by the bottom undulations. For small undulations, a simplified perturbation analysis is used to obtain first-order reflection and transmission coefficients of both the modes due to oblique incidence of waves of again both modes, in terms of integrals involving the shape function describing the bottom. For sinusoidal undulations, these coefficients are plotted graphically to illustrate the energy transfer between the waves of different modes induced by the bottom undulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.