Abstract

We consider a three-dimensional problem on the interaction of harmonic waves with a thin rigid movable inclusion in an infinite elastic body. The problem is reduced to solving a system of two-dimensional boundary integral equations of Helmholtz potential type for the stress jump functions on the opposite surfaces of the inclusion. We propose a boundary element method for solving the integral equations on the basis of the regularization of their weakly singular kernels. Using the asymptotic relations between the amplitude-frequency characteristics of the wave farzone field and the obtained boundary stress jump functions, we determine the amplitudes of the shear plane wave scattering by a circular disk-shaped inclusion for various directions of the wave incident on the inclusion and for a broad range of wave numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.