Abstract
The problem of the scattering of a surface wave in a nonviscous, incompressible fluid of infinite depth by a fully submerged, rigid, stationary sphere has been reduced to the solution of an infinite set of linear algebraic equations for the expansion coefficients in spherical harmonics of the velocity potential. These equations are easily solved numerically, so long as the sphere is not too close to the surface. The approach has been to formulate the problem as an integral equation, expand the Green's function, the velocity potential of the incident wave, and the total velocity potential in spherical harmonics, impose the boundary condition at the surface of the sphere, and carry out the integrations. The scattering cross section has been evaluated numerically and is shown to peak for values of the product of radius and wave number somewhat less than unity. Also, the Born approximation to the cross section is obtained in closed form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.