Abstract

Abstract We present a reciprocity and unitarity preserving formulation of the scattering of a scalar plane wave from a two-dimensional, randomly rough surface on which the Neumann boundary condition is satisfied. The theory is formulated on the basis of the Rayleigh hypothesis in terms of a single-particle Green's function G(q‖|k‖) for the surface electromagnetic waves that exist at the surface due to its roughness, where k‖ and q‖ are the projections on the mean scattering plane of the wave vectors of the incident and scattered waves, respectively. The specular scattering is expressed in terms of the average of this Green's function over the ensemble of realizations of the surface profile function (G(q‖|k‖)). The Dyson equation satisfied by (G(q‖|k‖)) is presented, and the properties of the solution are discussed, with particular attention to the proper self-energy in terms of which the averaged Green's function is expressed. The diffuse scattering is expressed in terms of the ensemble average of a two-p...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.