Abstract

Transport in single and double barrier devices is studied using a Monte Carlo solver for the Wigner transport equation. This approach allows the effects of tunneling and scattering to be included. Several numerical methods have been improved to render the Wigner Monte Carlo technique more robust, including a newly developed particle annihilation algorithm. A self-consistent iteration scheme with the Poisson equation was introduced. The role of scattering and space charge effects on the electrical characteristics of n-i-n nanostructures, ultra-scaled double gate MOSFETs, and GaAs resonant tunneling diodes is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.