Abstract

Abstract This paper reports the use of scanning thermal microscopy (SThM) for studying heat dissipation and phonon transport in nanoelectronic circuits consisting of carbon nanotubes (CNs). Thermally designed and batch fabricated SThM probes were used to resolve the phonon temperature distribution in the CN circuits with a spatial resolution of 50 nm. Heat dissipation at poor metal-CN contacts could be readily found by the thermal imaging technique. Important questions regarding energy transport in nanoelectronic circuits, such as where is heat dissipated, whether the electrons and phonons are in equilibrium, how phonons are transported, and what are the effects of mechanical deformation on the transport and dissipation properties, are addressed in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.