Abstract

We report on a scanning superconducting quantum interference device microscope operating at temperatures down to 20 mK in a dilution refrigerator. The instrument is designed for studying quantum mechanical coherence effects in mesoscopic systems and investigating magnetic effects on a mesoscopic length scale in novel materials. We have demonstrated the low-temperature operating capabilities of the instrument by studying superconducting tin disks and the superconducting transition of a thin-film tungsten sample and vortices in the same film. Looking forward, we discuss the applicability of the instrument to measurements of persistent currents in normal-metal rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.