Abstract

Scanning microphotolysis (SCAMP) is a combination of fluorescence microphotolysis and confocal laser scanning microscopy. A laser scanning microscope is equipped with an optical switch able to modulate the power or/and wavelength of the laser beam in less than a microsecond while a dedicated computer program is employed to precisely coordinate scanning process and laser beam modulation. By these means it becomes possible to vary the power or/and wavelength of the laser beam during scanning at a precision of one resolution element. Patterns of almost arbitrary design can be written into the object by photolysis, e.g., photobleaching or photoactivation. The dissipation of the photolysis pattern by diffusion or other types of molecular transport can be followed at confocal resolution and used to characterize the transport process. SCAMP can be employed in conjunction with single-photon or multiphoton excitation. Furthermore, it can be easily installed on virtually any confocal laser scanning microscope. We summarize at first the conceptual and practical basis of SCAMP. Then, two novel applications are discussed: (i) measurements of translational diffusion coefficients in truly three-dimensional systems at diffraction-limited resolution, and (ii) optical recording of single transporters in membrane patches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.