Abstract

An advanced scanning magnetoresistive microscopy (SMRM) - a robust magnetic imaging and probing technique - will be presented, which utilizes state-of-the-art recording heads of a hard disk drive as sensors. The spatial resolution of modern tunneling magnetoresistive sensors is nowadays comparable to the more commonly used magnetic force microscopes. Important advantages of SMRM are the ability to detect pure magnetic signals directly proportional to the out-of-plane magnetic stray field, negligible sensor stray fields, and the ability to apply local bipolar magnetic field pulses up to 10 kOe with bandwidths from DC up to 1 GHz. Moreover, the SMRM can be further equipped with a heating stage and external magnetic field units. The performance of this method and corresponding best practices are demonstrated by presenting various examples, including a temperature dependent recording study on hard magnetic L1(0) FeCuPt thin films, imaging of magnetic vortex states in an in-plane magnetic field, and their controlled manipulation by applying local field pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.