Abstract

Direct coordinative copolymerization of ethylene with functionalized co-monomers is a long-sought-after approach to introducing polyolefin functionality. However, functional-group Lewis basicity typically depresses catalytic activity and co-monomer incorporation. Finding alternatives to intensively studied group 4 d0 and late-transition-metal catalysts is crucial to addressing this long-standing challenge. Shown herein is that mono- and binuclear organoscandium complexes with a borate cocatalyst are active for ethylene + amino olefin [AO; H2 C=CH(CH2 )n NR2 ] copolymerizations in the absence of a Lewis-acidic masking reagent. Both activity (up to 4.2×102 kg mol-1 ⋅h-1> atm-1> ) and AO incorporation (up to 12 % at 0.2 m [AO]) are appreciable. Linker-length-dependent (n) AO incorporation and mechanistic probes support an unusual functional-group-assisted enchainment mechanism. Furthermore, the binuclear catalysts exhibit enhanced AO tolerance and enhanced long chain AO incorporation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.