Abstract

Quantum transport through devices coupled to electron reservoirs can be described in terms of the full counting statistics (FCS) of charge transfer. Transport observables, such as conductance and shot-noise power are just cumulants of FCS and can be obtained from the sample’s average density of transmission eigenvalues, which in turn can be obtained from a finite element representation of the saddle-point equation of the Keldysh (or supersymmetric) nonlinear sigma model, known as quantum circuit theory. Normal universal metallic behavior in the semiclassical regime is controlled by the presence of a Fabry–Pérot singularity in the average density of transmission eigenvalues. We present general conditions for the suppression of Fabry–Pérot modes in the semiclassical regime in a sample of arbitrary shape, a disordered conductor or a network of ballistic quantum dots, which leads to an anomalous metallic phase. Through a double-scaling limit, we derive a scaling equation for anomalous metallic transport, in the form of a nonlinear differential equation, which generalizes the ballistic-diffusive scaling equation of a normal metal. The two-parameter stationary solution of our scaling equation generalizes Dorokhov’s universal single-parameter distribution of transmission eigenvalues. We provide a simple interpretation of the stationary solution using a thermodynamic analogy with a spin-glass system. As an application, we consider a system formed by a diffusive wire coupled via a barrier to normal-superconductor reservoirs. We observe anomalous reflectionless tunneling, when all perfectly transmitting channels are suppressed, which cannot be explained by the usual mechanism of disorder-induced opening of tunneling channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.