Abstract
We conducted a laboratory study to evaluate the effects of body mass, environmental temperature, and food quality on phosphorus (P) efflux by caterpillars of the whitemarked tussock moth, Orygia leucostigma, J. E. Smith (Lepidoptera: Lymantriidae). We found that individual phosphorus efflux rate (Q the rate at which excreted and unassimilated P was egested in frass, mgP/day) was related to larval mass (M, mg dry) and environmental temperature (T,K) as Q = e14.69 M1.00e-0.54/kT, where K is Boltzmann's constant (8.62 × 10-5 eV/K, 1 eV = 1.60 × 10-19J). We also found that P efflux was not related to food phosphorous concentration, and suggest that this result was due to compensatory feeding by larvae eating low quality leaves. The P efflux model resulting from this analysis was simple and powerful. Thus, it appears that this type of model can be used to scale P flux from individual larvae to the population level and link species of insect herbivores to ecosystem processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.