Abstract

Scaling of pattern with size has been described and studied for over a century, yet its molecular basis is understood in only a few cases. In a recent, elegant study, Inomata and colleagues proposed a new model explaining how bone morphogenic protein (BMP) activity gradient scales with embryo size in the early Xenopus laevis embryo. We discuss their results in conjunction with an alternative model we proposed previously. The expansion-repression mechanism (ExR) provides a conceptual framework unifying both mechanisms. Results of Inomata and colleagues implicate the chordin-stabilizing protein sizzled as the expander molecule enabling scaling, while we attributed this role to the BMP ligand Admp. The two expanders may work in concert, as suggested by the mathematical model of Inomata et al. We discuss approaches for differentiating the contribution of sizzled and Admp to pattern scaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.