Abstract
Hypervelocity test sled slipper-rail impacts have been simulated numerically using the finite volume hydrocode, ChartD to the Three-Halves (CTH). This study addresses the difficulties of applying CTH model solutions to real test sled runs. Past CTH models using dimensions different than actual test sleds have been used to study phenomenological aspects of the problem. However, quantitative results from the CTH model solution do not apply directly to actual test sled runs due to strain rate effects and time scale differences. The Buckingham Pi Theorem is applied to two potential hypervelocity gouging models. Validity of the invariant products is tested using sample CTH hypervelocity gouging models that are scaled up to simulate dimensions of a real test sled. Real test sled dimensions are desired in order to more closely simulate actual test sled runs. Invariant products developed from application of the Buckingham Pi Theorem can be used as guidelines for determining whether a CTH model is applicable to a test sled with specific dimensions. Strain rate effects are investigated to study whether deviations between scaled CTH models may be reduced by modifying the constitutive model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.