Abstract

Human societies exhibit a diversity of social organizations that vary widely in size, structure, and complexity. Today, human sociopolitical complexity ranges from stateless small-scale societies of a few hundred individuals to complex states of millions, most of this diversity evolving only over the last few hundred years. Understanding how sociopolitical complexity evolved over time and space has always been a central focus of the social sciences. Yet despite this long-term interest, a quantitative understanding of how sociopolitical complexity varies across cultures is not well developed. Here we use scaling analysis to examine the statistical structure of a global sample of over a thousand human societies across multiple levels of sociopolitical complexity. First, we show that levels of sociopolitical complexity are self-similar as adjacent levels of jurisdictional hierarchy see a four-fold increase in population size, a two-fold increase in geographic range, and therefore a doubling of population density. Second, we show how this self-similarity leads to the scaling of population size and geographic range. As societies increase in complexity population density is reconfigured in space and quantified by scaling parameters. However, there is considerable overlap in population metrics across all scales suggesting that while more complex societies tend to have larger and denser populations, larger and denser populations are not necessarily more complex.

Highlights

  • Human societies display a wide diversity of sociopolitical complexity

  • We examine the organization of a global sample human societies across the spectrum of sociopolitical complexity

  • Our results show the self-similarity of population metrics across the spectrum of sociopolitical complexity in this global sample of societies

Read more

Summary

Introduction

Human societies display a wide diversity of sociopolitical complexity. In the 21st century, the smallest scales of social organization are politically autonomous hunter-gatherer families who self-organize into flexible, egalitarian groups of a few dozen individuals integrated into larger regional networks which form complex metapopulations that can include many hundreds of people [1,2,3]. As both N and A are functions of scale, ω, we can express the change in geographic range as a function of a change in population size by combining Eqs 3 and 4 to find A / N b where β = γ/λ. This means that across the range of sociopolitical complexity there is systematic behavior in the restructuring of population density (Fig 7C); as populations increase in sociopolitical complexity the amount of area per individual decreases rapidly (by 42%) and the degree of spatial packing increases (by 7%)

Discussion
Findings
Methods and data
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.