Abstract

ABSTRACTThe scaling laws are given for the entropies in the information theory, including the Shannon's entropy, its power, the Fisher's information and the Fisher–Shannon product, using the exponential-cosine screened Coulomb potential. The scaling laws are specified, in the r-space, as a function of |μ − μc, nℓ|, where μ is the screening parameter and μc, nℓ its critical value for the specific quantum numbers n and ℓ. Scaling laws for other physical quantities, such as energy eigenvalues, the moments, static polarisability, transition probabilities, etc. are also given. Some of these are reported for the first time. The outcome is compared with the available literatures’ results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.