Abstract
A new low-dissipation low-dispersion second-order scheme is applied to scale-resolving flow simulations using compressible and incompressible unstructured finite volume solvers. In wall-resolved and wall-modeled large-eddy simulations of the plane channel flow, the new scheme yields substantial improvements compared to the more dissipative/dispersive standard central scheme over a considerable range of Reynolds numbers. For general hybrid Reynolds-averaged Navier–Stokes/large-eddy simulations, a numerical blending approach is derived that uses a local sensor function to switch between the new scheme in the large-eddy simulation branch and the standard scheme in inviscid flow regions. After determining a suitable sensor formulation, the hybrid numerical scheme is applied to simulate a backward-facing step flow, for which satisfactory results and a reduced grid sensitivity are obtained. To demonstrate its potential in relevant aeronautical flows, the new scheme is successfully applied to hybrid Reynolds-averaged Navier–Stokes/large-eddy simulations of a three-element airfoil near stall and a rudimentary landing gear with massive flow separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.