Abstract

The baculovirus-insect cells expression system was used for the production of self-forming Porcine parvovirus (PPV) like particles (virus-like particles, VLPs) in serum-free medium. At 2 l bioreactor scale an efficient production was achieved by infecting the culture at a concentration of 1.5×10 6 cells/ml using a low multiplicity of infection of 0.05 pfu per cell. In a continuous bioreactor, it was shown that the uninfected insect cells were not sensitive to local shear stress values up to 2.25 N/m 2 at high Reynolds numbers (1.5×10 4) in sparging conditions. Uninfected insect cells can be grown at scaled-up bioreactor at high agitation and sparging rates as long as vortex formation is avoided and bubble entrapment is minimized. An efficient process scale-up to 25 l bioreactor was made using constant shear stress criteria for scale-up. The kinetics of baculovirus infection at low multiplicity of infection, either at different cell concentration or at different scales, are very reproducible, despite the different turbulence conditions present in the bioreactor milieu. The results suggest that the infection kinetics is controlled by the rate of baculovirus-cell receptor attachment and is independent of the bioreactor hydrodynamic conditions. Furthermore, the achieved specific and volumetric productivities were higher at the 25 l scale when compared to the smaller scale bioreactor. Different rates of cell lysis after infection were observed and seem to fully explain both the shift in optimal harvest time and the increase in cell specific productivity. The results emphasize the importance of integrated strategies and engineering concepts in process development at bioreactor stage with the baculovirus insect cell system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.