Abstract

NaA zeolite membranes were prepared by secondary growth method on the outer surface of α-Al2O3 hollow fiber supports. Vacuum seeding method was used for planting zeolite seeds on the support surfaces. Hydrothermal crystallization was then carried out in a synthesis solution with molar ratio of Al2O3:SiO2:Na2O:H2O=1:2:2:120 at 100°C for 4h. Effects of seeding conditions on preparation of hollow fiber NaA zeolite membranes were extensively investigated. Moreover, hollow fiber membrane modules with packing membrane areas of ca. 0.1 and 0.2m2 were fabricated to separate ethanol/water mixture. It is found that the thickness of seed layer is obviously affected by seed suspension concentration, coating time and vacuum degree. Close-packing seed layer is required to obtain high-quality membranes. The optimized seeding conditions (seed suspension mass concentration of 0.5%–0.7%, coating time of 5s and vacuum degree of 10kPa) lead to dense NaA zeolite layer with a thickness of 6–8μm. Typically, an as-synthesized hollow fiber NaA zeolite membrane exhibits good pervaporation performance with a permeation flux of 7.02kg·m−2·h−1 and separation factor >10000 for separation of 90% (by mass) ethanol/water mixture at 75°C. High reproducibility has been achieved for batch-scale production of hollow fiber NaA zeolite membranes by the hydrothermal synthesis approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.