Abstract
The digital representation of the Earth’s surface by terrain attributes is largely dependent on the scale at which they are computed. Typically the effects of scale on terrain attributes have only been investigated as a function of digital elevation model (DEM) grid size, rather than the neighborhood size over which they are computed. With high-resolution DEM now becoming more readily available, a multi-scale terrain analysis approach may be a more viable option to filter out the large amount short-range variation present within them, as opposed to coarsening the resolution of a DEM, and thereby more accurately represent soil-landscape processes. To evaluate this hypothesis, two examples are provided. The first study was designed to evaluate the systematic effects of varying both grid and neighborhood size on terrain attributes computed from LiDAR. In a second study, the objective was to examine how the correlations between soil and terrain attributes vary with neighborhood size, so as to provide an empirical measure of what neighborhood size may be most appropriate. Results suggest that the overall representation of the land surface by terrain attributes is specific to the land surface, but also that the terrain attributes vary independently in response to spatial extent over which they are computed. Results also indicate that finer grid sizes are more sensitive to the scale of terrain attribute calculation than larger grid sizes. For the soil properties examined in this study, slope curvatures produced the highest coefficients of correlation when calculated at neighborhood sizes between 117 and 189 m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.