Abstract

Rigorous scale-dependent bounds on the constitutive response of random polycrystalline aggregates are obtained by setting up two stochastic boundary value problems (Dirichlet and Neumann type) consistent with the Hill condition. This methodology enables one to estimate the size of the representative volume element (RVE), the cornerstone of the separation of scales in continuum mechanics. The method is illustrated on the single-phase and multiphase aggregates, and, generally, it turns out that the RVE is attained with about eight crystals in a 3D system. From a thermodynamic perspective, one can also estimate the scale dependencies of the dissipation potential in the velocity space and its complementary potential in the force space. The viscoplastic material, being a purely dissipative material, is ideally suited for this purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.