Abstract

AbstractThe dynamics and lifetime of atmospheric clouds are tightly coupled to entrainment and turbulent mixing. This paper presents direct numerical simulations of turbulent mixing followed by droplet evaporation at the cloud‐clear air interface in a meter‐sized volume, with an ensemble of up to almost half a billion individual cloud water droplets. The dependence of the mixing process on domain size reveals that inhomogeneous mixing becomes increasingly important as the domain size is increased. The shape of the droplet size distribution varies strongly with spatial scale, with the appearance of a pronounced negative exponential tail. The increase of relative dispersion during the transient mixing process is strongly dependent on the scale of the mixing and therefore on the Damköhler number, defined as the turbulence large‐eddy time scale divided by the cloud supersaturation relaxation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.