Abstract
We construct two types of scalar field theory on Snyder space-time. The first one is based on the natural momenta addition inherent to the coset momentum space. This construction uncovers a non-associative deformation of the Poincar\'e symmetries. The second one considers Snyder space-time as a subspace of a larger non-commutative space. We discuss different possibilities to restrict the extra-dimensional scalar field theory to a theory living only on Sndyer space-time and present the consequences of these restrictions on the Poincar\'e symmetries. We show moreover how the non-associative approach and the Doplicher-Fredenhagen-Roberts space can be seen as specific approximations of the extra-dimensional theory. These results are obtained for the 3d Euclidian Snyder space-time constructed from $\SO(3,1)/\SO(3)$, but our results extend to any dimension and signature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.