Abstract
Developing an inexpensive non-noble metal catalyst is essential in the electrochemical water reduction. However, to choose the support for hydrogen-producing catalyst is still a problem that needs to be solved. Herein, we report a novel route combining powder metallurgy and hydrothermal synthesis to fabricate Ni/MoS2 catalysts for boosting the hydrogen evolution reaction performance. Powder metallurgy produces the suborbicular pores on the surface and inside Ni once the sintering temperature reaches 1000 °C. The hollow MoS2 nanoparticles are successfully modified on the surface of porous Ni by hydrothermal synthesis. The hollow structure of MoS2 nanoparticles provides more active sites for electrochemical reaction and the porous Ni matrix with the porosity of 16.5% exhibits higher electronic conductivity, which endows the Ni/MoS2−1000 catalyst with an excellent hydrogen evolution reaction activity. The Ni/MoS2−1000 shows a low overpotential of 229 mV at the current densities of 10 mA·cm−2 with a small Tafel slope of 76 mV·dec−1. This study provides guidelines on the large-scale synthesis of nanostructured electrocatalysts with porous Ni as the support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.