Abstract

Inference of Gene Regulatory Networks (GRNs) remains an important open challenge in computational biology. The goal of bio-model inference is to, based on time-series of gene expression data, obtain the sparse topological structure and the parameters that quantitatively understand and reproduce the dynamics of biological system. Nevertheless, the inference of a GRN is a complex optimization problem that involve processing S-System models, which include large amount of gene expression data from hundreds (even thousands) of genes in multiple time-series (essays). This complexity, along with the amount of data managed, make the inference of GRNs to be a computationally expensive task. Therefore, the generation of parallel algorithmic proposals that operate efficiently on distributed processing platforms is a must in current reconstruction of GRNs. In this paper, a parallel multi-objective approach is proposed for the optimal inference of GRNs, since minimizing the Mean Squared Error using S-System model and Topology Regularization value. A flexible and robust multi-objective cellular evolutionary algorithm is adapted to deploy parallel tasks, in form of Spark jobs. The proposed approach has been developed using the framework jMetal, so in order to perform parallel computation, we use Spark on a cluster of distributed nodes to evaluate candidate solutions modeling the interactions of genes in biological networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.