Abstract

Converting greenhouse gases into valuable products has become a promising approach for achieving a carbon-neutral economy and sustainable development. However, the conversion efficiency depends on the energy yield of the substrate. In this study, we developed an electro-biocatalyticsystem by integrating electrochemical and microbial processes to upcycle CO2 into a valuable product (ectoine) using renewable energy. This system initiates the electrocatalytic reduction of CO2 to methane, an energy-dense molecule, which then serves as an electrofuel to energize the growth of an engineered methanotrophic cell factory for ectoine biosynthesis. The scalability of this system was demonstrated using an array of ten 25 cm2 electrochemical cells equipped with a high-performance carbon-supported isolated copper catalyst. The system consistently generated methane at the cathode under a total partial current of approximately -37 A (~175 mmolCH4 h-1) and O2 at the anode under a total partial current of approximately 62 A (~583 mmolO2 h-1). This output met the requirements of a 3-L bioreactor, even at maximum CH4 and O2 consumption, resulting in the high-yield conversion of CO2 to ectoine (1146.9 mg L-1). This work underscores the potential of electrifying the biosynthesis of valuable products from CO2, providing a sustainable avenue for biomanufacturing and energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.