Abstract

In this paper, we present a three-dimensional (3D) model-based video coding scheme for streaming static scene video in a compact way but also enabling time and spatial scalability according to network or terminal capability and providing 3D functionalities. The proposed format is based on encoding the sequence of reconstructed models using second-generation wavelets, and efficiently multiplexing the resulting geometric, topological, texture, and camera motion binary representations. The wavelets decomposition can be adaptive in order to fit to images and scene contents. To ensure time scalability, this representation is based on a common connectivity for all 3D models, which also allows straightforward morphing between successive models ensuring visual continuity at no additional cost. The method proves to be better than previous methods for video encoding of static scenes, even better than state-of-the-art video coders such as H264 (also known as MPEG AVC). Another application of our approach are smoothing camera path for suppression of jitter from hand-held acquisition and the fast transmission and real-time visualization of virtual environments obtained by video capture, for virtual or augmented reality and interactive walk-through in photo-realistic 3D environments around the original camera path

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.