Abstract

Scalability is a key characteristic of reconfigurable manufacturing systems, which allows system throughput capacity to be rapidly and cost-effectively adjusted to abrupt changes in market demand. This paper presents a scalability planning methodology for reconfigurable manufacturing systems that can incrementally scale the system capacity by reconfiguring an existing system. An optimization algorithm based on Genetic Algorithm is developed to determine the most economical way to reconfigure an existing system. Adding or removing machines to match the new throughput requirements and concurrently rebalancing the system for each configuration, accomplishes the system reconfiguration. The proposed approach is validated through a case study of a CNC-based automotive cylinder head machining system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.