Abstract

Lowering the operating temperature of solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) to reduce system cost and increase lifetime is the key to widely deploy this highly efficient energy technology, but the high cathode polarization losses at low temperatures limit overall cell performance. Here we demonstrate that by engineering a universal ceria-based scaffold with infiltrated nanoscale electrocatalysts, a low cathode polarization <0.25 Ω·cm2 with remarkably high performance 1 W/cm2 at 550 °C is achieved. The combination of low processing and operating temperature restrains the nanosized electrocatalysts, not only allowing fast oxygen transport but also providing an essential electronically connective network to facilitate electrochemical reactions without requiring the high-temperature processing of a separate cathode layer. Moreover, excellent SOFC durability was demonstrated for over 500 h. This work shows a promising pathway to reduce processing/system costs with all scalable ceramic processing techniques for the future development of low-temperature SOFCs and SOECs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.