Abstract

Scaffold-free engineered cartilage is being explored as a treatment for osteoarthritis. In this study, frictional shear stress was applied to determine the friction and damage behaviour of scaffold-free engineered cartilage, and tissue composition was investigated as it related to damage. Scaffold-free engineered cartilage frictional shear stress was found to exhibit a time-varying response similar to that of native cartilage. However, damage occurred that was not seen in native cartilage, manifesting primarily as tearing through the central plane of the constructs. In engineered cartilage, cells occupied a significantly larger portion of the tissue in the central region where damage was most prominent (18 ± 3% of tissue was comprised of cells in the central region vs 5 ± 1% in the peripheral region; p < 0.0001). In native cartilage, cells comprised 1-4% of tissue for all regions. Average bulk cellularity of engineered cartilage was also greater (68 × 103 ± 4 × 103 vs 52 × 103 ± 22 × 103 cells/mg), although this difference was not significant. Bulk tissue comparisons showed significant differences between engineered and native cartilage in hydroxyproline content (8 ± 2 vs 45 ± 3 µg HYP/mg dry weight), solid content (12.5 ± 0.4% vs 17.9 ± 1.2%), shear modulus (0.06 ± 0.02 vs 0.15 ± 0.07 MPa) and aggregate modulus (0.12 ± 0.03 vs 0.32 ± 0.14 MPa), respectively. These data indicate that enhanced collagen content and more uniform extracellular matrix distribution are necessary to reduce damage susceptibility. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.