Abstract

Tunable local surface plasmon resonance (LSPR) enhancement properties of scaffold-based multi-nanoparitcle clusters were investigated using finite-difference time-domain (FDTD) method with calculated optical spectra, near-field distribution, and average enhancement of hybrid nanostructures as slab/nanoparticls, cylinder/nanoparticles, and sphere/nanoparticles. Focusing on influence factors including surface curvature, coupling effect, and decorated particle number, several models were built for further understanding on the dominate contribution in complicate multi-particle nanostructure and to explore their potential for plasmonic enhancement applications such as surface-enhanced Raman spectroscopy (SERS), solar cells material, LSPR sensor, and nanoantenna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.