Abstract
Mechanical ventilation with large tidal volumes can increase lung alveolar permeability and initiate inflammatory responses, termed ventilator-induced lung injury (VILI). VILI is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell death. But the underlying molecular mechanisms that regulate VILI remain unclear. The purpose of this study was to investigate the mechanisms that regulate pulmonary endothelial barrier in an animal model of VILI. These data suggest that SC5b-9, as the production of the complement activation, causes increase in rat pulmonary microvascular permeability by inducing activation of RhoA and subsequent phosphorylation of myosin light chain and contraction of endothelial cells, resulting in gap formation. In general, the complement-mediated increase in pulmonary microvascular permeability may participate in VILI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.