Abstract
A layer of macrocyclic calix[4]arene derivatives has been grafted on the internal surface of the mesochannels of the ordered mesoporous SBA-15 to develop highly efficient trap for heavy transition metal (HTM) ions. To ensure the successful anchoring of calix[4]arene derivatives on the surface of SBA-15, two different types of calix[4]arene derivatives, one with one trimethoxysilane functional group and another with two trimethoxysilane functional groups have been explored. XRD, N2 adsorption and TEM results provide strong evidence that the mesoporous structure of the supporting materials retain their long range ordering throughout the grafting process. Solid-state NMR, TG and FT-IR spectroscopy indicate that both types of calix[4]arene derivatives can be well-anchored on the surface of the wall of SBA-15. Calix[4]arene derivative with only one trimethoxysilane functional group showed high grafting efficiency compared to that with two trimethoxysilane functional groups due to the intramolecular and intermolecular polycondensation between two trimethoxysilane functional groups. The HTM ions extraction capacity in aqueous solution of macrocycle functionalized SBA-15 nanohybrides for a series of HTM ions has been studied. The obtained materials demonstrated very high HTM ions extraction capacity up to 96% for Pb2+ in aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.