Abstract
Measurements have been made of nonlinear sawtooth oscillations of the displacement of a magnetized electron column in a cryogenic, cylindrical trap. First reported 7 years ago, these oscillations occur when the displacement is destabilized by a resistive wall and damped by a temperature-dependent collisional viscosity. A typical evolution can last for thousands of seconds. Measurements show that oscillations of the plasma displacement are accompanied by oscillations in the plasma temperature. A simple predator-and-prey model of the temperature and displacement gives rise to a limit cycle solution due to the nonmonotonic dependence of the viscosity on temperature. These limit cycles are in good quantitative agreement with the measured sawtooth oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.