Abstract
We explore the impact of nuclear matter saturation on the properties and systematics of finite nuclei across the nuclear chart. Using the ab initio in-medium similarity renormalization group (IM-SRG), we study ground-state energies and charge radii of closed-shell nuclei from $^4$He to $^{78}$Ni, based on a set of low-resolution two- and three-nucleon interactions that predict realistic saturation properties. We first investigate in detail the convergence properties of these Hamiltonians with respect to model-space truncations for both two- and three-body interactions. We find one particular interaction that reproduces well the ground-state energies of all closed-shell nuclei studied. As expected from their saturation points relative to this interaction, the other Hamiltonians underbind nuclei, but lead to a remarkably similar systematics of ground-state energies. Extending our calculations to complete isotopic chains in the $sd$ and $pf$ shells with the valence-space IM-SRG, the same interaction reproduces not only experimental ground states but two-neutron-separation energies and first excited $2^+$ states. We also calculate radii with the valence-space IM-SRG for the first time. Since this particular interaction saturates at too high density, charge radii are still too small compared with experiment. Except for this underprediction, the radii systematics is, however, well reproduced. Our results highlight the importance of nuclear matter as a theoretical benchmark for the development of next-generation chiral interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.