Abstract

The production of quantum entanglement between weakly coupled mapping systems, whose classical counterparts are both strongly chaotic, is investigated. In the weak-coupling regime, it is shown that time-correlation functions of the unperturbed systems determine the entanglement production. In particular, we elucidate that the increment of the nonlinear parameter of coupled kicked tops does not accelerate the entanglement production in the strongly chaotic region. An approach to the dynamical inhibition of entanglement is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.