Abstract

Both a pulsed laser and a helium–neon laser have been used to examine the magnitude of scintillation as a function of range and turbulence strength over a near-earth, horizontal path. A photo-optical technique was utilized to record directly a 61-cm cross section of a received laser beam. Photographs of beam cross sections made at ranges of from 200 to 1500 m were used to compute log-irradiance variances. Simultaneous with the optical data, measurements of the index-structure coefficient Cn were made by use of a high-speed thermal technique. The data are used to test the spherical-wave equation that gives the log-amplitude variance as a function of range and Cn. The measurements indicate that the variance increases for ranges up to about 700 m, at which distance saturation occurs, i.e., no further growth of the variance is observed. The data are also compared with the saturation equations of Tatarski and deWolf. In addition, the effect of the transmitter-beam divergence on the magnitude of scintillation is examined. Finally, a modification of the inertial subrange of the Kolmogorov turbulence model is suggested to explain the occurrence of particular optical effects observed during temperature-inversion conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.