Abstract

Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research.This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling.Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT) or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra); there is an urgent need for satellite-based biomass measurements to improve Ra estimation; and satellite-based soil moisture data could improve determination of soil water stress.

Highlights

  • Carbon is removed from the atmosphere via photosynthesis by plants

  • The results of this review suggest the creation of a hybrid Production efficiency models (PEM) could bring about a significant enhancement to the PEM methodology and terrestrial carbon flux modeling

  • The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLOPEM; Terrestrial Uptake and Release of Carbon (TURC); C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and net primary productivity (NPP) modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research

Read more

Summary

Introduction

Carbon is removed from the atmosphere via photosynthesis by plants. Upon entering the terrestrial ecosystem it is termed gross primary productivity (GPP), with the difference between carbon gain via GPP and carbon loss through plant respiration defined as net primary productivity (NPP) [1]. Monteith [27,28] is commonly credited with first proposing the existence of a conservative (linear) relationship between the rate of NPP and the rate at which solar energy is absorbed by the foliage, conducting experiments with crop species during the vegetative stages of growth under optimal growing conditions The ratio between these two quantities has been called the conversion efficiency of absorbed radiation into dry matter, and was used in many simple models of crop growth, i.e. bypassing the complex process of photosynthesis and respiration known to depend on many environmental variables [21]. That light absorption and utilization are decoupled so that convergence is to be expected on gross production rather than net production, owing to differences in respiratory costs associated with synthesis and maintenance of plant constituents and associated 'payback intervals' on carbon investment in different functional types [3]

Objectives
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.