Abstract

Mapping the mass concentration of near-surface atmospheric particulate matter (PM) using satellite observations has become a popular research niche, leading to the development of a variety of instruments, algorithms, and datasets over the past two decades. In this study, we conducted a holistic review of the major advances and challenges in quantifying PM, with a specific focus on instruments, algorithms, datasets, and modeling methods that have been developed over the past 20 years. The aim of this study is to provide a general guide for future satellite-based PM concentration mapping practices and to better support air quality monitoring and management of environmental health. Specifically, we review the evolution of satellite platforms, sensors, inversion algorithms, and datasets that can be used for monitoring aerosol properties. We then compare various practical methods and techniques that have been used to estimate PM mass concentrations and group them into four primary categories: (1) univariate regression, (2) chemical transport models (CTM), (3) multivariate regression, and (4) empirical physical approaches. Considering the main challenges encountered in PM mapping practices, for example, data gaps and discontinuity, a hybrid method is proposed with the aim of generating PM concentration maps that are both spatially continuous and have high precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.