Abstract

An astronomical body of mass M and radius R which is non-spherically symmetric generates a free space potential U which can be expanded in multipoles. As such, the trajectory of a test particle orbiting it is not a Keplerian ellipse fixed in the inertial space. The zonal harmonic coefficients J2,J3,… of the multipolar expansion of the potential cause cumulative orbital perturbations which can be either harmonic or secular over time scales larger than the unperturbed Keplerian orbital period T. Here, I calculate the averaged rates of change of the osculating Keplerian orbital elements due to the odd zonal harmonic J3 by assuming an arbitrary orientation of the body’s spin axis \(\hat{\boldsymbol{k}}\). I use the Lagrange planetary equations, and I make a first-order calculation in J3. I do not make a-priori assumptions concerning the eccentricity e and the inclination i of the satellite’s orbit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.