Abstract
The genetic basis for congenital hypopituitarism and related disorders is beginning to emerge, and over causal 30 genes have been identified, including six in the SHH signaling pathway. Mutations in some of these genes can also cause holoprosencephaly (HPE) or septo-optic dysplasia. SIX3 is a homeodomain protein expressed in the developing brain, pituitary gland, and eye. It activates SHH signaling and represses BMP signaling. Heterozygous mutations in SIX3 cause variable HPE in humans and mice. We identified a rare, heterozygous variant in SIX3 in two children with neonatal GH and TSH deficiency and stalk interruption, p.P74R. Using transient transfection in 3T3 cells, we demonstrated that the variant reduced the ability of SIX3 to transactivate the SHH enhancer and promoter of FOXG1, suggesting that the variant could be deleterious. To understand the role of SIX3 in hypothalamic and pituitary development we used Nkx2.1-cre and Prop1-cre to delete Six3 in mice. The Nkx2.1-cre, Six3flox/flox embryos had no evidence of infundibulum evagination or expression of Fgf10 or Tcf7l2 at e11.5. The oral ectoderm invaginated in mutants, but no definitive Rathke’s pouch formed. There was no evidence of Lhx3 expression and only trace amounts of Pitx1, indicating that pituitary induction failed due to the lack of Six3 in the developing hypothalamus. Similarly, disruption of Six3 expression in Rathke’s pouch using Prop1-cre ablated pituitary development. Together, these data reveal essential roles of Six3 in both the neural and oral ectoderm for hypothalamic and pituitary development, respectively. Heterozygous loss of function variants in SIX3 could be a contributor to multiple pituitary hormone deficiencies in children, especially if there are associated craniofacial abnormalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.