Abstract
Objective At present, false negatives/positives have been reported in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. Searching for the molecular basis of such tests' unreliability, this study aimed at defining how specific are the sequences used in serological and polymerase chain reaction (PCR) tests to detect SARS-CoV-2. Materials and Methods Analyses were performed on the leading SARS-CoV-2 biomarker spike glycoprotein (gp). Sharing of peptide sequences between the spike antigen and the human host was analyzed using the Peptide Search program from Uniprot database. Sharing of oligonucleotide sequences was investigated using the nucleotide Basic Local Alignment Search Tool (BLASTn) from National Center for Biotechnology Information (NCBI). Results Two main points stand out: (1) a massive pentapeptide sharing exists between the spike gp and the human proteome, and only a limited number of pentapeptides (namely 107) identify SARS-CoV-2 spike gp as nonself when compared with the human proteome, and (2) the small phenetic difference practically disappears at the genetic level. Indeed, almost all of the 107 pentadecameric nucleotide sequences coding for the pentapeptides unique to SARS-CoV-2 spike gp are present in human nucleic acids too. Conclusion The data are of immunological significance for defining the issue of the viral versus human specificity and likely explain the fact that false positives can occur in serological and PCR tests for SARS-CoV-2 detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.