Abstract

The correlation among multiple lines of business plays a critical role in aggregating claims and thus determining loss reserves for an insurance portfolio. We show that the Sarmanov family of bivariate distributions is a convenient choice to capture the dependencies introduced by various sources, including the common calendar year, accident year, and development period effects. The density of the bivariate Sarmanov distributions with different marginals can be expressed as a linear combination of products of independent marginal densities. This pseudo-conjugate property greatly reduces the complexity of posterior computations. In a case study, we analyze an insurance portfolio of personal and commercial auto lines from a major U.S. property-casualty insurer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.