Abstract

In previous studies, we have shown that phosphonium salt diphenyl derivatives are attractive antitrypanosomal hit compounds with EC50 values against Trypanosoma brucei in the nanomolar range. To evaluate the role of the cationic center on the trypanocidal activity and extend the structure-activity relationship (SAR) of this series, trialkylammonium, pyridinium, and quinolinium salt analogues were synthesized and evaluated in vitro against T. b. brucei. Similar SARs were observed with ammonium and phosphonium salts showing that charge dispersion and lipophilic groups around the cationic center are crucial to obtain submicromolar activities. The new compounds were equally effective against wild type (T. b. brucei s427) and resistant strains (TbAT1-KO and TbB48) of trypanosomes indicating that the P2 and high affinity pentamidine transporters (HAPT) are not essential to their trypanocidal action. Similarly to phosphonium salt derivatives, diffusion seems to be the main route of entry into trypanosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.