Abstract

Genetic alphabet expansion technology, creating new replicable and functional DNA molecules with unnatural base pairs (UBPs), is the novel promising research area of xenobiology. Recently, this technology has rapidly advanced, resulting in the need for a sequencing method for DNA molecules containing UBPs. However, all of the conventional sequencing methods, such as Sanger methods, are for four-letter DNA molecules. Here, we present an improved Sanger sequencing method (Sanger gap sequencing) for DNAs containing our UBP, Ds-Px, which appears as gaps in the sequencing peak patterns. By improving the sequencing reaction for efficient Ds-Px pairing and using modified Px substrates, we have developed a sequencing method with increased processivity and clear gap patterns for multiple Ds-Px pairs in various sequence contexts. This method is useful for UBP applications such as high-affinity DNA aptamer generation and semisynthetic organism creation involving UBPs. In addition, through this research, we found that the side chains of UBs greatly affect the efficiency of UB pairings in replication, thus suggesting further development of UBPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.