Abstract

The development of effective water purification systems is crucial for controlling and remediating environmental pollution, especially in terms of sterilization. Herein, we demonstrate elaborately designed composite nanosheets with a sandwich structure, composed of two-dimensional (2D) Ti3C2 MXene nanosheet core and conformal ZIF-8 ultrathin outer layers, and their potential applications in photocatalytic sterilization. The study results indicate that the conformal ZIF-8-MXene nanosheet exhibits an expanded light absorption range (826 nm), improved photothermal conversion efficiency (6.2 °C s−1), and photocurrent response, thus boosting photocatalytic sterilization efficiency (6.63 log10 CFU mL−1) against Escherichia coli under simulated sunlight within 90 min. Interestingly, 2D ZIF-8 layers exhibit positive zeta potential (19 mV), good hydrophilicity (40.6°), and local photogenerated-hole accumulation, possessing efficient bacteria-trapping efficiency. Membrane filters fabricated from optimized composite nanosheets exhibit an outstanding bacteria-trapping and sterilization efficiency (almost 100 %) against Escherichia coli under simulated sunlight within 30 min of the flow photocatalytic experiments. This work not only presents a rational structural design of the conformal and ultrathin anchoring of ZIF-8 onto a 2D conductive material for bacteria-trapping and sterilization, but also opens new opportunities for using metal–organic frameworks in photocatalytic disinfection of drinking water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.