Abstract

A large-deformation numerical methodology is applied to simulate the interaction effects for a pipeline installed in a trench backfilled with loosely deposited dry sand, focusing on shallow buried pipelines subjected to lateral displacements relative to the surrounding soil. Based on the backfill–pipeline deformation mode under shallow embedment conditions, described in previous experimental studies, analyses are performed while considering only the critical state shear strength parameters of the backfill. The numerical methodology is validated against experimental full-scale test measurements from the literature, for pipelines buried in uniform dry loose and medium sand. Parametric analyses are performed to generate approximate formulas and charts for calculating (i) the maximum force on the pipeline and (ii) the minimum trench dimensions to eliminate interaction with the surrounding natural ground. Application of the proposed approach in the prediction of independent full-scale test results for a pipeline embedded in a shallow trench demonstrates its effectiveness, and underlines the effect of trench dimensioning on the response of the pipeline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.