Abstract

We investigate the sandpile model on the two-dimensional Sierpinski gasket fractal. We find that the model displays interesting critical behavior, and we analyze the distribution functions of avalanche sizes, lifetimes, and topplings and calculate the associated critical exponents t51.5160.04, a51.6360.04, and m51.3660.04. The avalanche size distribution shows power-law behavior modulated by logarithmic oscillations which can be related to the discrete scale invariance of the underlying lattice. Such a distribution can be formally described by introducing a complex scaling exponent t*[t1id, where the real part t corresponds to the power law and the imaginary part d is related to the period of the logarithmic oscillations. @S1063-651X~96!03907-4#

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.