Abstract
Using a two-phase sampling approach with systematic selection of large samples of covariates followed by a sampling with probability proportional to prediction (3P sampling) process to subsample field measures of the parameters of interest can be an efficient design to sample larger forest areas. To assist in obtaining predictions for each sample plot consistently and rapidly, we propose using a 360° spherical camera. In this study, three covariates derived from spherical images were evaluated: (i) basal area (P[BA]); (ii) sum of squared heights per hectare (P[SHT]); and (iii) stem fraction (P[SF]). These covariates were used to estimate volume. Sample simulations showed no biases in volume estimates for any of the three covariates. Overall, P[SF] had the lowest standard error percentages across different simulated sample sizes (10% for five subsamples to 2.5% for 50 subsamples), even though it had the lowest correlations with field volume (correlation = 0.30–0.31). This may be a result of the relatively consistent stand conditions within the study site. Based on our results, standard errors of 5% were obtainable with measurement fractions of about 25% of the number of image-based predictions when using P[SF] or P[BA] and 75% when using P[SHT].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.